Weak C-Hopf Algebras and Multiplicative Isometries

نویسنده

  • Gabriella Böhm
چکیده

We show how the data of a finite dimensional weak C∗-Hopf algebra can be encoded into a pair (H, V ) where H is a finite dimensional Hilbert space and V :H⊗H → H⊗H is a partial isometry satisfying, among others, the pentagon equation. In case of V being unitary we recover the Baaj-Skandalis multiplicative unitary of the discrete compact type. Relation to the pseudomultiplicative unitary approach proposed by J.-M. Vallin and M. Enock is also discussed. E-mail: [email protected] Supported by the Hungarian Scientific Research Fund, OTKA – T 016 233 E-mail: [email protected] Supported by the Hungarian Scientific Research Fund, OTKA – T 020 285.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 1 . 14 20 v 1 [ m at h . O A ] 9 N ov 2 00 7 Finite - dimensional Hopf C - bimodules and C - pseudo - multiplicative unitaries

Finite quantum groupoids can be described in many equivalent ways [8, 11, 16]: In terms of the weak Hopf C -algebras of Böhm, Nill, and Szlachányi [2] or the finite-dimensional Hopf-von Neumann bimodules of Vallin [14], and in terms of finite-dimensional multiplicative partial isometries [4] or the finite-dimensional pseudo-multiplicative unitaries of Vallin [15]. In this note, we show that in ...

متن کامل

A Coassociative C∗-Quantum Group with Non-Integral Dimensions

By weakening the counit and antipode axioms of a C∗-Hopf algebra and allowing for the coassociative coproduct to be non-unital we obtain a quantum group, that we call a weak C∗Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. This amounts to generalizing the Baaj-Skandalis multiplicative unitaries to multipicative partial isometries. E...

متن کامل

C-pseudo-multiplicative unitaries and Hopf C-bimodules

We introduce C∗-pseudo-multiplicative unitaries and concrete Hopf C∗-bimodules for the study of quantum groupoids in the setting of C∗-algebras. These unitaries and Hopf C∗-bimodules generalize multiplicative unitaries and Hopf C∗-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C∗-pseudo-multiplicativ...

متن کامل

Equivariant Spectral Triples

We present the review of noncommutative symmetries applied to Connes’ formulation of spectral triples. We introduce the notion of equivariant spectral triples with Hopf algebras as isometries of noncommutative manifolds, relate it to other elements of theory (equivariant K-theory, homology, equivariant differential algebras) and provide several examples of spectral triples with their isometries...

متن کامل

Weak C∗-hopf Algebras: the Coassociative Symmetry of Non-integral Dimensions

By allowing the coproduct to be non-unital and weakening the counit and antipode axioms of a C∗-Hopf algebra too, we obtain a selfdual set of axioms describing a coassociative quantum group, that we call a weak C∗-Hopf algebra, which is sufficiently general to describe the symmetries of essentially arbitrary fusion rules. It is the same structure that can be obtained by replacing the multiplica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998